Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sruthi, S.; * | Anuradha, B.
Affiliations: Department of ECE, SVU College of Engineering, SV University, Tirupati, AP, India
Correspondence: [*] Corresponding author. S. Sruthi, Department of ECE, SVU College of Engineering, SV University, Tirupati, AP, India. E-mail: sruthi578965@gmail.com.
Abstract: Fire poses a significant threat to both lives and property, necessitating effective early detection measures. Despite challenges in identifying smoke and fire in their initial stages, we have devised a cost-efficient visual detection system. Early fire detection enhances its potential effectiveness. CCTV surveillance systems are now commonplace in developed countries, serving as tools for periodic monitoring of various locations. However, fluctuating ambient light conditions, camera angles, and seasonal variations can introduce data distortions, occlusions, and impact model accuracy. To address these issues, we’ve implemented a method combining deep learning networks and machine learning strategies for flame detection and direction classification. Our innovative QuickDenseNet extracts dense features from segmented flame video frames. We introduce the Ensemble Score Voted SVM (ESV-SVM), employing SVM as the primary learner and score voting as the auxiliary learner. Our approach is rigorously evaluated through simulations, measuring accuracy and various Key Performance Indices (KPIs), including Precision, F1-score, Recall, Correlation, Error, FPR, and Correlation Coefficients. Remarkably, our proposed method achieves an impressive precision rate of approximately 99.5%.
Keywords: Fire detection, ensemble learning, deep feature, CNN, video surveillance, color segmentation, dense network
DOI: 10.3233/JIFS-236387
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 2521-2535, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl