Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Paul, Ann Rija; * | Grace Mary Kanaga, E.
Affiliations: CSE Department, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
Correspondence: [*] Corresponding author. Ann Rija Paul. E-mail: annrijapaul3@gmail.com.
Abstract: In this new era of intelligence and automation, it is important to develop intelligent software to analyse traffic data and detect abnormal activities occurring in the public. Information from GPS, Surveillance cameras, traffic management systems etc will be helpful for the researchers to develop such algorithms. In this research work, we propose a method to detect traffic accidents and used a deep convolutional neural network (D-CNN) and Centroid based vehicle tracking algorithm for vehicle detection. Overlapping bounding boxes and speed of the vehicle are considered for collision detection. The vehicle is tracked using a centroid tracking algorithm to find acceleration, speed and trajectory values of each vehicle in the continuous frames. The trajectory and angle change after the collision can be used to classify the accidents. The result shows a detection accuracy of 99% in such a way outperforms the other latest methods. The results from the proposed method can be used in several accident reconstruction softwares like PC crash, ARPro etc.
Keywords: Vehicle tracking, surveillance, collision detection, trajectory and angle of intersection, deep convolutional neural network
DOI: 10.3233/JIFS-235911
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 4803-4816, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl