Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yang, Xingyao; * | Chang, Mengxue | Yu, Jiong | Wang, Dongxiao | Dang, Zibo
Affiliations: School of Software, Xinjiang University, Urumqi, China
Correspondence: [*] Corresponding author. Xingyao Yang, School of Software, Xinjiang University, Urumqi 830008, China. E-mail: yangxy@xju.edu.cn.
Abstract: Social recommendations enhance the quality of recommendations by integrating social network information. Existing methods predominantly rely on pairwise relationships to uncover potential user preferences. However, they usually overlook the exploration of higher-order user relations. Moreover, because social relation graphs often exhibit scale-free graph structures, directly embedding them in Euclidean space will lead to significant distortion. To this end, we propose a novel graph neural network framework with hypergraph and hyperbolic embedding learning, namely HMGCN. Specifically, we first construct hypergraphs over user-item interactions and social networks, and then perform graph convolution on the hypergraphs. At the same time, a multi-channel setting is employed in the convolutional network, with each channel encoding its corresponding hypergraph to capture different high-order user relation patterns. In addition, we feed the item embeddings and the obtained high-order user embeddings into a hyperbolic graph convolutional network to extract user and item representations, enabling the model to better capture the hierarchical structure of their complex relationships. Experimental results on three public datasets, namely FilmTrust, LastFM, and Yelp, demonstrate that the model achieves more comprehensive user and item representations, more accurate fitting and processing of graph data, and effectively addresses the issues of insufficient user relationship extraction and data embedding distortion in social recommendation models.
Keywords: Social recommendation, hypergraph learning, hyperbolic embedding, graph convolutional network, data mining
DOI: 10.3233/JIFS-235266
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9543-9557, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl