Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Chengding | Xu, Zhaoping; * | Liu, Liang | Yang, Tao
Affiliations: Nanjing University of Science and Technology, School of Mechanical Engineering, Nanjing, China
Correspondence: [*] Corresponding author. Zhaoping Xu, Nanjing University of Science and Technology, School of Mechanical Engineering, Nanjing, China. E-mail: xuzhaoping@njust.edu.cn.
Abstract: There are limitations of personalization in Advanced Driver Assistance Systems (ADAS) that have a serious impact on driver acceptance and satisfaction. This study investigates driving style recognition method to achieve personalization of longitudinal driving behavior. Currently, driving style recognition algorithms for Personalized Adaptive Cruise Control (PACC) rely on integrated recognition. However, disturbances in the driving cycle may lead to changes in a driver’s integrated driving style. Therefore, the integrated driving style cannot accurately and comprehensively reflect the driver’s driving style. To solve this problem, a new driving style recognition method for PACC is proposed, which considers integrated driving style and driving cycle. Firstly, the method calculates the constructed feature parameters of driving cycle and style, and then reduces the dimensionality of the feature parameter matrix by principal component analysis (PCA). Secondly, a two-stage clustering algorithm with self-organizing mapping networks and K-means clustering (SOM-K-means) is used to obtain the type labels. Then, a transient recognition model based on random forest (RF) is established and the hyperparameters of this model are optimized by sparrow search algorithm (SSA). Based on this, a comprehensive driving style recognition model is established using analytic hierarchy process (AHP). Finally, the validity of the proposed method is verified by a natural dataset. The method incorporates the driving cycle into driving style recognition and provides guidance for improving the personalization of adaptive cruise control system.
Keywords: Personalized adaptive cruise control, SOM-K-means two-stage clustering, random forest (RF), sparrow search algorithm (SSA), driving style recognition
DOI: 10.3233/JIFS-235045
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8659-8675, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl