Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karthika, K.a; * | Rangasamy, Devi Priyab
Affiliations: [a] Research Scholar, Anna University, Chennai, India | [b] Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
Correspondence: [*] Corresponding author. K. Karthika, Research Scholar, Anna University, Chennai, India. E-mail: karthikainfoscience@gmail.com.
Abstract: In today’s digital era, the security of sensitive data such as Aadhaar data is of utmost importance. To ensure the privacy and integrity of this data, a conceptual framework is proposed that employs the Diffie-Hellman key exchange protocol and Hash-based Message Authentication Code (HMAC) to enhance the security. The proposed system begins with the preprocessing phase, which includes removing noise, standardizing formats and validating the integrity of the data. Next, the data is segmented into appropriate sections to enable efficient storage and retrieval in the cloud. Each segment is further processed to extract meaningful features, ensuring that the relevant information is preserved while reducing the risk of unauthorized access. For safeguarding the stored Aadhaar data, the system employs the Diffie-Hellman key exchange protocol which allows the data owner and the cloud service provider to establish a shared secret key without exposing it to potential attackers. Additionally, HMAC is implemented to verify the identity of users during the login process. HMAC enhances security by leveraging cryptographic hash functions and a shared secret key to produce a distinct code for each login attempt. This mechanism effectively protects the confidentiality and integrity of stored data. The combination of Diffie-Hellman key exchange and HMAC authentication provides a robust security framework for Aadhaar data. It ensures that the data remains encrypted and inaccessible without the secret key, while also verifying the identity of users during the login process. This comprehensive approach helps preventing unauthorized access thereby protecting against potential attacks, instilling trust and confidence in the security of Aadhaar data stored in the cloud. Results of the article depict that the proposed scheme achieve 0.19 s of encryption time and 0.05 s of decryption time.
Keywords: Hash based message authentication code (HMAC), cryptographic hash functions, Diffie Hellman, communications
DOI: 10.3233/JIFS-234641
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8639-8658, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl