Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gul, Rimsha | Bashir, Maryam; *
Affiliations: FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan
Correspondence: [*] Corresponding author. Maryam Bashir, FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan. E-mail: maryam.bashir@nu.edu.pk.
Abstract: As the volume of data continues to grow, the significance of text classification is on the rise. This vast amount of data majorly exists in the form of texts. Effective data preparation is essential to extract sentiment data from this vast amount of text, as irrelevant and redundant information can impede valuable insights. Feature selection is an important step in the data preparation phase as it eliminates irrelevant and insignificant features from the huge features set. There exist a large body of work related to feature selection for image processing but limited research is done for text data. While some studies recognize the significance of feature selection in text classification, but there is still need for more efficient sentiment analysis models that optimize feature selection and reduce computational. This manuscript aims to bridge these gaps by introducing a hybrid multi-objective evolutionary algorithm as a feature selection mechanism, combining the power of multiple objectives and evolutionary processes. The approach combines two feature selection techniques within a binary classification model: a filter method, Information Gain (IG), and an evolutionary wrapper method, Binary Multi-Objective Grey Wolf Optimizer (BMOGWO). Experimental evaluations are conducted across six diverse datasets. It achieves a reduction of over 90 percent in feature size while improving accuracy by nearly nine percent. These results showcase the model’s efficiency in terms of computational time and its efficacy in terms of higher classification accuracy which improves sentiment analysis performance. This improvement can be beneficial for various applications, including recommendation systems, reviews analysis, and public opinion observation. However, it’s crucial to acknowledge certain limitations of this study. These encompass the need for broader classifier evaluation, and scalability considerations with larger datasets. These identified limitations serve as directions for future research and the enhancement of the proposed approach.
Keywords: Feature selection, sentiment analysis, multi-objective optimization, evolutionary algorithms
DOI: 10.3233/JIFS-234615
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8917-8932, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl