Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Wenda | Shi, Cao; *
Affiliations: School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
Correspondence: [*] Corresponding author. Cao Shi, School of Information Science and Technology, Qingdao University of Science and Technology, 266000 Qingdao, ShanDong, China. E-mail: caoshi@yeah.net.
Abstract: Accurate segmentation of knee cartilage in MR images is crucial for early diagnosis and treatment of knee conditions. Manual segmentation is time-consuming, leading researchers to explore automatic deep learning methods. However, the choice between 2D and 3D networks for organ segmentation remains debated. In this paper, we propose a hybrid 2D and 3D deep neural network approach, named UVNet, which combines the strengths of both techniques to enhance segmentation performance. Within this network structure, the 3D segmentation network serves as the backbone for feature extraction, while the 2D segmentation network functions as an information supplement network. Local and global MIP images are generated by employing various maximum intensity projection modes of knee MRI volumes as input for the information supplement network. By constructing a local and global MIP feature fusion module, the supplementary information obtained from the 2D segmentation network is fully integrated into the backbone network. We assess the quality of the proposed method using the Osteoarthritis Initiative (OAI) dataset and the 2010 Grand Challenge Knee Image Segmentation (SKI-10) dataset, comparing it to the Baseline Network and other advanced 2D and 3D segmentation methods. The experiments demonstrate that UVNet achieves competitive performance in the aforementioned two cartilage segmentation tasks.
Keywords: Convolutional neural network, maximum intensity projection, segmentation of knee cartilage
DOI: 10.3233/JIFS-234050
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 4253-4264, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl