Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Alsuwat, Emad; *
Affiliations: Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
Correspondence: [*] Corresponding author. Emad Alsuwat, Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 26571, Saudi Arabia. E-mail: Alsuwat@tu.edu.sa.
Abstract: Machine learning (ML) techniques play a crucial role in producing precise predictions without the use of explicit programming by utilizing representative and unbiased data. These methods, which are a subset of artificial intelligence (AI), are used in a variety of settings, including recommendation engines, spam filtering, malware detection, classification, and predictive maintenance. While ML algorithms improve results, they also present security and privacy threats, especially in the face of adversarial ML attacks such as data poisoning assaults that can undermine data modeling applications. This study introduces SecK2, a cutting-edge ML method developed to stop dangerous input from entering ML models. The scalability of SecK2 is proved through meticulous experimental research, revealing its astonishing capacity to identify data poisoning attacks at a previously unheard-of pace. As a result, SecK2 becomes a valuable tool for guaranteeing the reliability and security of ML models. Our suggested method produces outstanding results by a variety of criteria. Notably, it achieves a noteworthy 61% convergence rate and an exceptional 89% attack detection rate. Additionally, it offers a phenomenal 96% throughput while protecting data integrity at 53%. The technique also boasts impressive Validation accuracy of 96% and Training accuracy of 92%. The suggested technology offers a strong and reliable barrier against the rising danger of data poisoning attacks. ML practitioners can have more faith in their models, thanks to SecK2’s capabilities, protecting against potential adversarial assaults and preserving the dependability of ML-based applications.
Keywords: Data poisoning attacks, machine learning, privacy prediction, malicious data
DOI: 10.3233/JIFS-233942
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10619-10633, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl