Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yua | Shen, Boa; b; * | Zhang, Jinglina | Zhang, Zhiyuana; b
Affiliations: [a] School of Electronic and Information Engineering, Beijing Jiaotong University, ShangYuanCun Number 3, Beijing, China | [b] Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, ShangYuanCun Number 3, Beijing, China
Correspondence: [*] Corresponding author. Bo Shen. Email: bshen@bjtu.edu.cn.
Abstract: The task of conversational machine reading comprehension (CMRC) is an extension of single-turn machine reading comprehension to multi-turn settings, to relflect the conversational way in which people seek information. The correlations between multiple rounds of questions mean that the conversation history is critical to solving the CMRC task. However, existing CMRC models ignore the interference that arises from using excessive historical information to answer the current question when incorporating the dialogue history into the current question. In this paper, an effective Question Selection Module (QSM) is designed to select most relevant historical dialogues when answering the current question through question coupling and coarse-to-fine matching. In addition, most existing approaches perform memory inference by stacked RNNs at context word level, without considering semantic information flowing in the direction of conversation flow. In view of this problem, we implement sequential recurrent reasoning at the turn level of the dialogue, where the turn information contains all the filtered historical semantics for the current step. We conduct experiments on two benchmark datasets, QuAC and CoQA, released by Stanford University. The results confirm that our model satisfactorily captures the valid history and performs recurrent reasoning, and our model achieves an F1-score of 83.0% on CoQA dataset and 67.8% on QuAC dataset, outperforming the best alternative model by 4.6% on CoQA and 2.7% on QuAC.
Keywords: Conversational machine reading comprehension, conversation history, recurrent reasoning, attention mechanism
DOI: 10.3233/JIFS-233828
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 1115-1128, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl