Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Yuan; *
Affiliations: School of Music, NanJing XiaoZhuang University, Nanjing, China
Correspondence: [*] Corresponding author. Yuan Wang, School of Music, NanJing XiaoZhuang University, Nanjing 211171, China. E-mail: wangyuan@njxzc.edu.cn.
Abstract: Recent years, research on automatic music transcription has made significant progress as deep learning techniques have been validated to demonstrate strong performance in complex data applications. Although the existing work is exciting, they all rely on specific domain knowledge to enable the design of model architectures and training modes for different tasks. At the same time, the noise generated in the process of automatic music transcription data collection cannot be ignored, which makes the existing work unsatisfactory. To address the issues highlighted above, we propose an end-to-end framework based on Transformer. Through the encoder-decoder structure, we realize the direct conversion of the spectrogram of the collected piano audio to MIDI output. Further, to remove the impression of environmental noise on transcription quality, we design a training mechanism mixed with white noise to improve the robustness of our proposed model. Our experiments on the classic piano transcription datasets show that the proposed method can greatly improve the quality of automatic music transcription.
Keywords: Music automatic transcription, transformer, piano, deep learning
DOI: 10.3233/JIFS-233653
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8441-8448, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl