Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abdus Subhahan, D.a | Vinoth Kumar, C.N.S.b; *
Affiliations: Department of Networking and Communications, College of Engineering and Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Chennai
Correspondence: [*] Corresponding author. C.N.S. Vinoth Kumar, E-mail: vinothks1@srmist.edu.in.
Abstract: The worldwide deforestation rate worsens year after year, ultimately resulting in a variety of severe implications for both mankind and the environment. In order to track the success of forest preservation activities, it is crucial to establish a reliable forest monitoring system. Changes in forest status are extremely difficult to manually annotate due to the tiny size and subtlety of the borders involved, particularly in regions abutting residential areas. Previous forest monitoring systems failed because they relied on low-resolution satellite images and drone-based data, both of which have inherent limitations. Most government organizations still use manual annotation, which is a slow, laborious, and costly way to keep tabs on data. The purpose of this research is to find a solution to these problems by building a poly-highway forest convolution network using deep learning to automatically detect forest borders so that changes over time may be monitored. Here initially the data was curated using the dynamic decomposed kalman filter. Then the data can be augmented. Afterward the augmented image features can be fused using the multimodal discriminant centroid feature clustering. Then the selected area can be segmented using the iterative initial seeded algorithm (IISA). Finally, the level and the driver of deforestation can be classified using the poly-highway forest convolution network (PHFCN). The whole experimentation was carried out in a dataset of 6048 Landsat-8 satellite sub-images under MATLAB environment. From the result obtained the suggested methodology express satisfied performance than other existing mechanisms.
Keywords: Deforestation, dynamic decomposed kalman filter, multimodal discriminant centroid feature clustering, iterative initial seeded algorithm, poly-highway forest convolution network
DOI: 10.3233/JIFS-233534
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl