Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Fuchen | Zhou, Sijia; * | Zhang, Dezhou | Wang, Xiaocui
Affiliations: College of Mechanical and Electrical Engineering, Wenzhou University, Zhejiang Wenzhou, China
Correspondence: [*] Corresponding author. Sijia Zhou, College of Mechanical and Electrical Engineering, Wenzhou University, Zhejiang Wenzhou 325035, China. E-mail: zhousj@wzu.edu.cn.
Abstract: Deep learning has demonstrated remarkable advantages in the field of human pose estimation. However, traditional methods often rely on widening and deepening networks to enhance the performance of human pose estimation, consequently increasing the parameter count and complexity of the networks. To address this issue, this paper introduces Ghost Attentional Down network, a lightweight human pose estimation network based on HRNet. This network leverages the fusion of features from high-resolution and low-resolution branches to boost performance. Additionally, GADNet utilizes GaBlock and GdBlock, which incorporate lightweight convolutions and attention mechanisms, for feature extraction, thereby reducing the parameter count and computational complexity of the network. The fusion of relationships between different channels ensures the optimal utilization of informative feature channels and resolves the issue of feature redundancy. Experimental results conducted on the COCO dataset, with consistent image resolution and environmental settings, demonstrate that employing GADNet leads to a reduction of 60.7% in parameter count and 61.2% in computational complexity compared to the HRNet network model, while achieving comparable accuracy levels. Moreover, when compared to commonly used human pose estimation networks such as Cascaded Pyramid Network (CPN), Stacked Hourglass Network, and HRNet, GADNet achieves high-precision detection of human keypoints even with fewer parameters and lower computational complexity, our network has higher accuracy compared to MobileNet and ShuffleNet.
Keywords: Human pose estimation, high-resolution network, attention mechanism, feature redundancy
DOI: 10.3233/JIFS-233501
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 5-6, pp. 11247-11261, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl