Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lv, Zhaoming; *
Affiliations: School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
Correspondence: [*] Corresponding author. Lv. Zhaoming, School of Computer and Information Technology, Xinyang Normal University, Xinyang, 464000, China. E-mail: zhaominglv@whu.edu.cn.
Abstract: Metaheuristics are widely used in science and industry because it as a high-level heuristic technique can provide robust or advanced solutions compared to classical search algorithms. Flow Regime Algorithm is a novel physics-based optimization approach recently proposed, and it is one of the candidate algorithms for solving complex optimization problems because of its few parameter configurations, simple coding, and good performance. However, the population that initialized randomly may have poor diversity issues, resulting in insufficient global search, and premature convergence to local optimum. To solve this problem, in this paper, a novel enhanced Flow Regime Algorithm based on opposition learning scheme is proposed. The proposed algorithm introduces the opposition-based learning strategy into the generation of some populations to enhance the global search performance while maintaining a fast convergence rate. In order to verify the performance of the proposed algorithm, 23 benchmark numerical optimization functions were studied experimentally in detail and compared with six well-known algorithms. Experimental results show that the proposed algorithm outperforms all other metaheuristic algorithms in all unimodal functions with higher accuracy, and can obtain competitive results on more multimodal cases. A statistical comparison shows that the proposed algorithm has superiority. Finally, that the proposed algorithm can achieve higher quality alignment compared to most other metaheuristic-based systems and OAEI ontology alignment systems.
Keywords: Meta-heuristic algorithms, flow regime algorithm, opposition-based learning, benchmark functions
DOI: 10.3233/JIFS-233329
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 11353-11368, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl