Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Du, Baiganga; b | Zhang, Fujianga; b | Guo, Juna; b; * | Sun, Xianga; b
Affiliations: [a] School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China | [b] Hubei Digital Manufacturing Key Laboratory, Wuhan, China
Correspondence: [*] Corresponding author. Jun Guo, E-mail:junguo@whut.edu.cn.
Abstract: The actual operating environment of rotating mechanical device contains a large number of noisy interference sources, leading to complex components, strong coupling, and low signal to noise ratio for vibration. It becomes a big challenge for intelligent fault diagnosis from high-noise vibration signals. Thus, this paper proposes a new deep learning approach, namely decomposition-enhance Fourier residual network (DEFR-net), to achieve high noise immunity for vibration signal and learn effective features to discriminate between different types of rotational machine faults. In the proposed DEFR-net, a novel algorithm is proposed to explicitly model high-noise signals for noisy data filtering and effective feature enhancement based on a hard threshold decomposition function and muti-channel self-attention mechanism. Furthermore, it deeply integrates complementary analysis based on fast Fourier transform in the time-frequency domain and extends the breadth of network. The performance of the proposed model is verified by comparison with five state-of-the-art algorithms on two public datasets. Moreover, the noise experimental results show that the fault diagnosis accuracy is still 85.91% when the signal-to-noise-ratio reaches extreme noise of –8 dB. The results demonstrate that the proposed method is a valuable study for intelligent fault diagnosis of rotating machines in high-noise environments.
Keywords: Intelligent fault diagnosis, high noise immunity, fourier residual network, decompose-enhance algorithm, attention mechanism
DOI: 10.3233/JIFS-233190
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl