Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Zana | Lu, TongWeib; *
Affiliations: [a] School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China | [b] Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China
Correspondence: [*] Corresponding author. Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China. E-mail: lutongwei@wit.edu.cn.
Abstract: Some anomaly detection methods are based on CNN to fuse spatial and channel-wise information together within local receptive fields. However, the correlation between feature channels has not been fully utilized. Channel attention has been shown to model the interdependence between convolution feature channels and improve network representation. It is possible to introduce channel attention into anomaly detection. We attempt to directly embed the SE(Squeeze and Excitation) module into the convolutional layer but reduced anomaly detection performance. Therefore, we propose a lightweight channel attention module C-SE(Current Squeeze and Excitation) suitable for anomaly detection. C-SE module not only improves the representation ability of depth convolutional neural network but also has a significant effect on texture anomaly detection. C-SE module body is constructed by average pooling and maximum pooling branches, which ensure that local salient features of the image are not lost. Then reduce the negative impact of feature calibration through a long connection. In addition, the improvement of classifier plays an important role. Experimental results have shown that the proposed method outperforms the Patch SVDD methods by 3% in image-level AUROC and 0.7% in pixel-level AUROC on the MVTec benchmark. The higher AUROC score and the faster rate of convergence prove the effectiveness of the method.
Keywords: Anomaly detection, channel attention, feature calibration, texture, MVTec
DOI: 10.3233/JIFS-232677
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10323-10334, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl