Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Tiefenga | Wang, Taoa | Jiang, Xianweia | Liu, Genshengb; *
Affiliations: [a] State Grid Shanghai Qingpu Electric Power Supply Company, Shanghai, China | [b] Shanghai Qizhi Technology Co., Ltd., Shanghai, China
Correspondence: [*] Corresponding author. Gensheng Liu, Shanghai Qizhi Technology Co., Ltd., Shanghai, China. E-mail: gua09726672@163.com.
Abstract: In the initial construction process of smart grid dispatching control system in power grid dispatching control center, because different subsystems are in decentralized development, independent operation and independent management, it is easy to reduce data interconnection, which leads to difficulties in data sharing and restricts the information level of the system. The data is multi-source, and the data format is inconsistent, resulting in the application problems that the data can not be shared, accessed, managed, analyzed and mined in real time among different subsystems. In order to solve the problems of data sharing and mining, this paper constructs a knowledge map entity extraction model to study the power grid fault events. Based on the knowledge map theory, the structured and unstructured data related to power grid dispatching are processed to improve the application efficiency of data. Cleaning the preprocessed data to obtain the corresponding entity value and attribute value. The knowledge extraction model of power grid fault event reasoning knowledge mapping is constructed, and the power grid fault event reasoning knowledge edge mapping system is designed to extract the relationship between events and complete data storage. The experimental results show that the text prediction degree of the proposed model is high, which can reach more than 95; The accuracy is 96.71%, the recall rate is 94.88%, and the F1 value is 9.27%. This proves the feasibility of this study, in order to provide data and theoretical support for intelligent management and real-time dispatching of power grid.
Keywords: Power grid fault, event reasoning, knowledge map, data extraction, data mining
DOI: 10.3233/JIFS-232370
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8479-8488, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl