Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Singh, Surender | Sharma, Sonam; *
Affiliations: School of Mathematics, Faculty of Sciences, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
Correspondence: [*] Corresponding author. Sonam Sharma. E-mail: 20dmt001@smvdu.ac.in.
Abstract: A Single-valued neutrosophic set (SVNS) has recently been explored as a comprehensive tool to assess uncertain information due to varied human cognition. This notion stretches the domain of application of the classical fuzzy set and its extended versions. Various comparison measures based on SVNSs like distance measure, similarity measure, and, divergence measure have practical significance in the study of clustering analysis, pattern recognition, machine learning, and computer vision-related problems. Existing measures have some drawbacks in terms of precision and exclusion of information and produce unreasonable results in categorization problems. In this paper, we propose a generic method to define new divergence measures based on common aggregation operators and discuss some algebraic properties of the proposed divergence measures. To further appreciate the proposed divergence measures, their application to pattern recognition has been investigated in conjunction with the prominent existing comparison measures based on SVNSs. The comparative assessment sensitivity analysis of the proposed measures establishes their edge over the existing ones because of appropriate classification results.
Keywords: Single-valued neutrosophic set, aggregation operator, pattern recognition, divergence measure
DOI: 10.3233/JIFS-232369
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9007-9020, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl