Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Jiarui; *
Affiliations: Hoseo University, Asan City, South Chungcheong, South Korea
Correspondence: [*] Corresponding author. Jiarui Zhang. E-mail: A931362022@163.com.
Abstract: The design of the emergency communication vehicle is centered around the overall layout, which is characterized by the fact that the vehicle chassis is mostly purchased parts and is equipped with an insulated and insulated box, mainly used for instrument operation and equipment placement. The emergency communication vehicle cabin environment includes: cabin seats; seat cover; control cabinet, including operation keyboard, display screen, etc; The ceiling and carpet that make up the interior space of the car; Storage box for storage equipment; tool cabinet; cabin control system facilities; Fire prevention and extinguishing facilities in the cabin; various handrails, coat racks, short ladders, lighting facilities, etc. inside the car. The design of emergency communication vehicle interior environment involves multiple disciplines, and the selection of design schemes requires scientific and reasonable evaluation methods to select reasonable schemes for optimization design. The evaluation of emergency communication vehicle cabin’s internal environment design is classical multiple attribute decision making (MADM) problems. In this article, based on bidirectional projection and grey relational projection measure, we shall propose some projection models with q-rung orthopair fuzzy sets (q-ROFSs). First of all, the definition of q-ROFSs is introduced. Furthermore, some projection models with q-ROFSs are proposed based on the bidirectional projection and grey relational projection model. Based on developed weighted projection models, the MADM model is established and all computing steps are simply depicted. Finally, a numerical example for evaluation of emergency communication vehicle cabin’s internal environment design is given to illustrate this new model and some comparisons are conducted to illustrate advantages of the new built method.
Keywords: MADM problems, q-rung orthopair fuzzy sets (q-ROFSs), projection model, emergency communication vehicle, cabin’s internal environment design
DOI: 10.3233/JIFS-232198
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2887-2898, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl