Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Durgam, Revathi; * | Devarakonda, Nagaraju
Affiliations: School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Correspondence: [*] Corresponding author. Revathi Durgam, School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India. E-mail: revathidurgam@gmail.com.
Abstract: In machine learning, a crucial task is feature selection in that the computational cost will be increased exponentially with increases in problem complexity. To reduce the dimensionality of medical datasets and reduce the computational cost, multi-objective optimization approaches are mainly utilized by researchers. Similarly, for improving the population diversity of the Flamingo Search Algorithm, the neighbourhood centroid opposition-based learning mutation is employed. In this paper, to improve the classification accuracy, enhance their exploration capability in the search space and reduce the computational cost while increasing the size of dataset, neighbourhood centroid opposition-based learning (NCOBL) is integrated into the multi-objective optimization based Flamingo Search Algorithm (MOFSA). The optimal selected datasets are classified by using the weighted K-Nearest Neighbour classifier. With the use of fifteen benchmark medical datasets, the efficacy of the suggested strategy is assessed in terms of recall, precision, accuracy, running time, F-measure, hamming loss, ranking loss, standard deviation, mean value error, and size of the selected features. Then the performance of the suggested feature selection technique is compared to that of the existing approaches. The suggested method produced a minimum mean value, standard deviation, mean hamming loss, and maximum accuracy of about 99%. The experimental findings demonstrate that the suggested method may enhance classification accuracy and also eliminate redundancy in huge datasets.
Keywords: Flamingo search algorithm, K-Nearest Neighbour, feature selection, multi-objective optimization, disease classification
DOI: 10.3233/JIFS-232128
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6911-6922, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl