Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cano-Izquierdo, Jose-Manuel; * | Ibarrola, Julio | Almonacid, Miguel
Affiliations: Departamento de Automática, Ingeniería Eléctrica y Tecnología Electrónica, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Cartagena, Spain
Correspondence: [*] Corresponding author. Jose-Manuel Cano-Izquierdo. E-mail: JoseM.Cano@upct.es.
Abstract: Deep-learning (DL) is a new paradigm in the artificial intelligence field associated with learning structures able to connect directly numeric data with high-level patterns or categories. DL seems to be a suitable technique to deal with computationally challenging Brain Computer Interface (BCI) problems. Following DL strategy, a new modular and self-organized architecture to solve BCI problems is proposed. A pattern recognition system to translate the measured signals in order to establish categories representing thoughts, without previous pre-processing, is developed. To achieve an easy interpretability of the system internal functioning, a neuro-fuzzy module and a learning methodology are carried out. The whole learning process is based on machine learning. The architecture and the learning method are tested on a representative BCI application to detect and classify motor imagery thoughts. Data is gathered with a low-cost device. Results prove the efficiency and adaptability of the proposed DL architecture where the used classification module (S-dFasArt) exhibits a better behaviour compared with the usual classifiers. Additionally, it employs neuro-fuzzy modules which allow to offer results in a rules format. This improves the interpretability with respect to the black-box description. A DL architecture, going from the raw data to the labels, is proposed. The proposed architecture, based on Adaptive Resonance Theory (ART) and Fuzzy ART modules, performs data processing in a self-organized way. It follows the DL paradigm, but at the same time, it allows an interpretation of the operation stages. Therefore this approach could be called Transparent Deep Learning.
Keywords: Transparent deep learning, brain computer interface, neuro-fuzzy modular architecture, s-dFasArt, motor imagery
DOI: 10.3233/JIFS-231387
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8747-8760, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl