Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ge, Hongping; * | Liu, Huaying | Luo, Yun
Affiliations: Science and Technology College of Nanchang Hangkong University, Gongqingcheng, China
Correspondence: [*] Corresponding author. Hongping Ge, Science and Technology College of Nanchang Hangkong University, Gongqingcheng, China. E-mail: hpge1993@126.com.
Abstract: Aiming at the troubles of difficult extraction of fault features and low fault recognition rate in rotating equipment fault detection approach, a new technique for intelligent diagnosis based on modified hierarchical diversity entropy (MHDE) and extension theory (ET) is proposed in the thesis. Firstly, MHDE employs to comprehensively describe the fault information of the given signals. Secondly, the MHDE feature sets are regarded as the characteristic parameters of the extension matter element model, and the matter element model in various states is established. Finally, the testing datasets are fed into the matter element model for each operating conditions, and the correlation function is used to compute the comprehensive correlation between the testing datasets and the various conditions of the rotating machinery, so as to realize the qualitative and quantitative identification of the testing datasets. The reliability and superiority of the proposed new approach is validated by real experimental datasets on various rotating machinery types. The analysis results show that the proposed novel technology can effectively excavate the feature information and accurately identify various fault conditions of rotating machinery. In addition, compared with other combined model technology in the paper, the proposed intelligent fault diagnosis technology has better classification performance.
Keywords: Rotating machinery, modified hierarchical diversity entropy, extension theory, correlation function, fault diagnosis technology
DOI: 10.3233/JIFS-231363
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 5567-5586, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl