Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tang, Zhong; *
Affiliations: School of Philosophy and Religion, Minzu University of China, Beijing, China
Correspondence: [*] Corresponding author. Zhong Tang, School of philosophy and religion, Minzu University of China, Beijing 100081, China. E-mail: tangzhong168@outlook.com.
Abstract: Architectural aesthetics improve the appearance and value of a building/construction structure based on shape, color, rigidity, etc., appealingly. It includes the maximum safety requirements, durability, structural ability, etc. Therefore the aesthetic implementation requires high-level data accumulation and analysis to satisfy the earlier constraints. This article develops a Selective Aesthetic Application Paradigm (SAAP) for meeting the user criteria in structural design for region-specific adaptability. The proposed paradigm gathers information on the region, people’s expectations, visibility, and structural performance for the aesthetic design application. The proportion considerations in the application are subject to vary according to the region’s adaptability and performance. The proportion of the accumulated data influence in the application is determined using deep learning. In the learning paradigm, two-layered configurations for region-adaptability and performance measures are trained to provide aesthetic design application recommendations. Based on the suggestion and recommendation, the deep learning module is trained to rectify design errors. The training is independent of the previous two error and adaptability verification layers. It is performed using the qualified (selected) aesthetic design with a previous history of user satisfaction.
Keywords: Architectural aesthetics, data analysis, deep learning, error detection
DOI: 10.3233/JIFS-231076
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6365-6379, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl