Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shan, Yuxiang | Lu, Hailiang | Lou, Weidong; *
Affiliations: China Tobacco Zhejiang Industrial Company Limited
Correspondence: [*] Corresponding author. Weidong Lou, China Tobacco Zhejiang Industrial Company Limited. E-mail: wdlou@mail.com.
Abstract: Exploiting dynamic spatial and temporal features of location information for robot modeling is of great importance in many real applications. It has gained increasing attention in the era of the Internet of Things (IoT). However, successful modeling and accurate localization for robot in indoor environment is still a challenge, where the environment factors are complex and unpredictable, such as signal noise, obstacles and spare fingerprints. Existing studies usually employ data driven and learning based models to capture spatial and temporal features for robot location estimation, modeling dynamics of robot and make robot decision. However, the modeling and localization performance is not satisfied. In this paper, to address above challenges, a novel deep learning framework called multi-faceted deep learning based dynamics modeling and robot localization learning (DMLoc) method is proposed. Specifically, a localization attention module is designed to capture the features from original fingerprints and optimized fingerprints information. Then, a multi-faceted localization module is proposed, which integrates extraction model and optimized model with long short-term memory (LSTM) and gate recurrent unit (GRU). Moreover, a multi-feature fusion layer is designed to fuse the extracted features and generate localization results. Extensive simulation results show the efficiency of the proposed DMLoc.
Keywords: Robot localization, dynamics modeling, learning-based robot decision
DOI: 10.3233/JIFS-230895
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 5541-5550, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl