Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Priya Varshini, A.G.a; * | Anitha Kumari, K.b
Affiliations: [a] IT Department, Dr. Mahalingam College of Engineering and Technology, Pollachi, India | [b] IT Department, PSG College of Technology, Coimbatore, India
Correspondence: [*] Corresponding author. A.G. Priya Varshini, Assistant Professor (SS), IT Department, Dr. Mahalingam College of Engineering and Technology, Pollachi, India. E-mail: priyavarshiniag76789@gmail.com.
Abstract: As the size and complexity of projects grows, estimates are increasingly used, especially in the agile community. Software development cannot begin without first conducting thorough planning and estimation. Estimating how much work a project will take is a common first step in the software development life cycle. By employing ensemble techniques, we integrate multiple learning algorithms to build a more accurate predictive model. The core elements of our proposed stacked ensemble strategy include Decision Tree, Principal Components Regression, Random Forest, NeuralNet, GLMNET, XGBoost, Earth, and Support Vector Machine. Moreover, we augment the model’s performance by incorporating a blend of these foundational algorithms with other ensemble regression methods. Extensive testing in the suggested research work with a number of Super Learners demonstrates that Regression is the best technique for judging effort. The evaluation of the different estimators involved the use of various metrics, including Mean Absolute Error, Root Mean Squared Error, Mean Squared Error, Percentage of Close Approximations within 25% of the True Values (PRED (25)), R-Squared Coefficients, Precision, Recall, and F1-Score. The proposed method yields more trustworthy predicted performance than either single-model approaches or stacked ensembles. Effort estimation serves as the foundation for the rest of the project management process.
Keywords: Software effort estimations, stacked ensemble method, super learner, principal components regression
DOI: 10.3233/JIFS-230676
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 9697-9713, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl