Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ghavidel, Motahare | Yadollahzadeh-Tabari, Meisam; * | GolsorkhTabariAmiri, Mehdi
Affiliations: Department of Computer Engineering, Islamic Azad University, Babol Branch, Babol, Iran
Correspondence: [*] Corresponding author. Meisam Yadollahzadeh-Tabari. E-mail: m_tabari@baboliau.ac.ir.
Abstract: In this paper, we proposed classification and clustering algorithms that are proper for analyzing customer-related datasets, which are mostly high-dimensional with too many instances. For the clustering purpose, This paper presents a Cuckoo-Search-based Variable Weighting (CSVW) Clustering algorithm to obtain optimal variable weights of high-dimensional data for each cluster. This paper also proposes a deep Inferarer Classifier for categorizing customers using Bi-Directional Long Short-Term Memory (Bi-LSTM) neural network, which uses a Fuzzy Inferential Classifier on its last layer. The Insurance Company (TIC) and InstaCart datasets are utilized for the experiments and performance evaluation. Simulation results reveal that the proposed clustering algorithm generates appropriate Silhouette and Elbow criteria scores in a few cycles of execution in comparison to ordinal clustering algorithms. Also, the proposed classification algorithm with fuzzy soft-max classifier hits the better Classification Criteria in comparison.
Keywords: Customer clustering, Cuckoo optimization, variable-sensitive clustering, deep learning
DOI: 10.3233/JIFS-230675
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 339-353, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl