Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Tianxionga; * | Xu, Mengmenga | Yang, Liub | Zhou, Meiyuc | Sun, Xinc
Affiliations: [a] School of Art, Anhui University, Hefei, China | [b] School of Machinery and Electrical Engineering, Anhui Jianzhu University, Hefei, China | [c] School of Art Design and Media, East China University of Science and Technology, Shanghai, China
Correspondence: [*] Corresponding author. Tianxiong Wang, School of Art, Anhui University, NO. 111, Jiulong Road, Hefei, 230601, China. E-mail: wangtx_2018@163.com.
Abstract: Kansei Engineering (KE) is a product design method that aims to develop products to meet users’ emotional preferences. However, traditional KE faces the problem that the acquisition of Kansei factors does not represent the real consumers demands based on manual and reports, and using traditional methods to calculate relationship between Kansei factors and specific design elements, which can lead to the omission of key information. To address these problems, this study adopts text mining and backward propagation neural networks (BPNN) to propose a product form design method from a multi-objective optimization perspective. Firstly, Term Frequency-Inverse Document Frequency (TF-IDF) and WordNet are used to extract key user Kansei requirements from online review texts to obtain more accurate Kansei knowledge. Secondly, the BPNN is used to establish the non-linear relationship between product Kansei factors and specific design elements, and a preference mapping prediction model is constructed. Finally, BPNN is transformed into an iterative prediction value of non-dominated sorting genetic algorithm-II (NSGA-II), and the model is solved through multi-objective evolutionary algorithm (MOEA) to obtain the Pareto optimal solution set that satisfies the user’s multiple emotional needs, and the fuzzy Delphi method is used to obtain the best product form design scheme that meets the user’s multiple emotional images. Using the example of electric bicycle form design could show that this proposed method can effectively complete multi-objective product solutions innovation design.
Keywords: Text mining, Back propagation neural network (BPNN), Multi-objective evolutionary algorithm (MOEA), Non-dominated sorting genetic algorithm-II (NSGA-II), Kansei engineering
DOI: 10.3233/JIFS-230668
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8865-8885, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl