Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yi, Weiguo; * | Ma, Bin | Zhang, Heng | Ma, Siwei
Affiliations: School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, Liaoning, China
Correspondence: [*] Corresponding author. Weiguo Yi. E-mail: jiekexun98@163.com.
Abstract: Compared with other traditional community discovery algorithms, density peak clustering algorithm is more efficient in getting network structures through clustering. However, DPC needs to contain the distance information between all nodes as sources, so it cannot directly processing the complex network represented by the adjacency matrix. DPC introduces truncation distance when calculating the local density of nodes, which is usually set as a fixed value according to experience, and lacks self-adaptability for different network structures. A feasible solution to those problems is to combined rough set theory and kernel fuzzy similarity measures. In this work, we present overlapping community detection algorithm based on improved rough entropy fusion density peak. The algorithm applied rough set theory to attribute reduction of massive high-dimensional data. Another algorithm defines the similarity of sample points by the inner product between two vectors on the basis of fuzzy partition matrix. Finally, a community detection algorithm based on rough entropy and kernel fuzzy density peaks clustering (CDRKD) has proposed by combining the two algorithms above, we perform an extensive set of experiments to verify the effectiveness and feasibility of the algorithm.
Keywords: Overlapping community detection, rough neighborhood mutual information entropy, density peaks clustering, kernel fuzzy similarity measure
DOI: 10.3233/JIFS-230614
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2513-2527, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl