Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Xiaotian | Pan, Zhongjie | He, Ningxin | Gao, Tiegang; *
Affiliations: College of Software, Nankai University, Tianjin, China
Correspondence: [*] Corresponding author. Tiegang Gao, College of Software, Nankai University, Tianjin, 300457, China. E-mail: gaotiegang@nankai.edu.cn.
Abstract: Unmanned aerial vehicles (UAVs) play a crucial role in maritime search and rescue missions, capturing images of open water scenarios and assisting in object detection. Previous object detection models have mainly focused on general scenarios. However, existing object detection models have mainly focused on general scenarios, while images captured by UAVs in vast ocean scenarios often contain numerous small objects that significantly degrade the performance of the original models. To address this challenge, we propose a model that can automatically detect objects in images captured by UAVs during maritime search and rescue missions. Our approach involves designing a new detection head with higher resolution feature maps and more comprehensive feature information to improve the detection of small objects. Additionally, we integrate Swin Transformer blocks into the small object detection head, which can improve the model’s ability to obtain abundant contextual information and thus improves the model’s ability to detect small objects. Moreover, we fuse the Convolutional Block Attention Model into the small object detection head to help the model focus on important features. Finally, we adopt a model ensemble strategy to further improve the mean average precision (mAP). Our proposed model achieves a 4.05% improvement in mAP compared to the baseline model. Furthermore, our model outperforms the previous state-of-the-art model on the SeaDronesSee dataset in terms of fewer parameters, lower training costs, and higher mAP.
Keywords: Deep learning, object detection, YOLOv5, Swin Transformer, UAV
DOI: 10.3233/JIFS-230200
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 3575-3586, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl