Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dutta, Kusumika Kroria; * | Manohar, Premilab | Indira, K.c
Affiliations: [a] Department of Electrical & Electronics Engineering, M S Ramaiah Institute of Technology, Bangalore, Visvesveraya Technological University, Belagavi, India | [b] Department of Electrical & Electronics Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Visvesveraya Technological University, Belagavi, India | [c] Department of Electronics & Communication Engineering, M S Ramaiah Institute of Technology, Bangalore, Visvesveraya Technological University, Belagavi, India
Correspondence: [*] Corresponding author. Kusumika Krori Dutta, Department of Electrical & Electronics Engineering, M S Ramaiah Institute of Technology, Bangalore, Visvesveraya Technological University, Belagavi, India. E-mail: kusumika@msrit.edu.
Abstract: Although epilepsy is one of the most prevalent and ancient neurological disorder, but, still difficult to identify the specific type of seizure, due to artefacts, noise, and other disturbances, because of acquisition of Scalp EEG. It necessitating the use of skilled medical professionals as incorrect diagnosis lead to wrong Anti Seizure Drug (ASDs) and face it’s side effects. On the other hand machine learning plays a crucial role in seizure detection by analyzing and identifying patterns in brain activity data that are indicative of seizures. It can be used to develop predictive models that can detect the onset of seizures in real-time, allowing for early intervention and improved patient outcomes. Most of the research work focuses on seizure detection using various machine learning techniques pre-processed by different mathematical models. But, very less attention is paid towards seizure type detection. In this study, multiple Machine and Deep Learning algorithms were used in conjunction with time-domain and frequency-domain pre-processing to classify epileptic seizures into multiple types. The ictal period of various seizure types were extracted from Temple University Hospital EEG (TUHEEG) and the pre-processed data was tried out with multiple classifiers, including support vector classifiers (SVC), K- Nearest Neighbor (KNN), and Long short term memory (LSTM), among others. By using SVM, KNN, and LSTM, multiclass classification of seven types of epileptic seizures with 19 channels were considered for each EEG data and a 75–25 train–test ratio was accomplished with 90.41%, 94.46%, and 86.2% accuracy respectively. Epileptic seizure’s ictal phase EEG signals are categorized using a variety of machine learning(ML) and deep learning(DL) methods after being pre-processed using time domain and frequency domain approaches. The KNN yields the best results of all.
Keywords: Seizure classification, TUHEEG, ABSZ, CPSZ, FNSZ, GNSZ, SPSZ, TNSZ, TCSZ, SVM, KNN, LSTM, EEG
DOI: 10.3233/JIFS-224570
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8217-8226, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl