Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Singh, Nitin Kumara; * | Singh, Pardeepa | Das, Prativab | Chand, Satisha
Affiliations: [a] School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India | [b] ITER, Siksha ’O’ Anusandhan, Bhubaneswar, Odisha
Correspondence: [*] Corresponding author. Nitin Kumar Singh, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India. E-mail: nitin32_scs@jnu.ac.in.
Abstract: Social media platforms allow people across the globe to share their thoughts and opinions and conveniently communicate with each other. Apart from various advantages of social media, it is also misused by a set of users for hate-mongering with toxic and offensive comments. The majority of the earlier proposed toxicity detection methods are primarily focused on the English language, but there is a lack of research on low-resource languages and multilingual text data. We propose an XRBi-GAC framework comprising XLM-RoBERTa, Bi-GRU with self-attention and capsule networks for multilingual toxic text detection. A loss function is also presented, which fuses the binary cross-entropy loss and focal loss to address the class imbalance problem. We evaluated the proposed framework on two datasets, namely, the Jigsaw Multilingual Toxic Comment dataset and HASOC 2019 dataset and achieved F1-score of 0.865 and 0.829, respectively. The results of the experiments show that the proposed framework has outperformed the state-of-the-art multilingual models XLM-RoBERTa and mBERT on both datasets, which shows the versatility and robustness of the proposed XRBi-GAC framework.
Keywords: Toxicity, multilingual text, XLM-RoBERTa, Bi-GRU, self-attention, capsule network
DOI: 10.3233/JIFS-224536
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 1409-1421, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl