Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhou, Bina | Chen, Jieshia; b; * | Zhang, Yanga | Yang, Shangleia | Lu, Haob
Affiliations: [a] School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China | [b] School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
Correspondence: [*] Corresponding author. Jieshi Chen, Tel./Fax: +86 21 67791474; E-mail: cjshbb@sjtu.edu.cn.
Abstract: In the laser spiral welding (LSW) process, the welding parameters have a significant impact on the weld quality. In this paper, experiments were conducted and experimental data were collected on galvanized steel sheets using the LSW process, and mathematical models were developed using response surface methodology (RSM) and genetic algorithm (GA) to verify the specific effects of each process parameter on the weld and to perform process optimization. Laser power, welding speed, gap and focal length were selected as the influencing factors, and melt depth, melt width and concave as the output results. In the RSM model we found that the laser power was positively correlated with the weld depth and width, while the welding speed was inversely correlated with the weld depth and width, the gap was positively correlated with the amount of concave, and the focal length had no significant effect on the weld. In the GA model we use a large amount of experimental data for BP neural network training and iterative optimization using a genetic algorithm. Validation experiments were conducted on two models, and the results indicated that the two models had higher accuracy in predicting the welding depth and width compared to predicting the concave. The GA model had an 8% increase in tensile strength and a 25% increase in plasticity of the weld joint obtained from the optimal process compared to the RSM model. The GA model has higher accuracy in optimizing the LSW process.
Keywords: Laser spiral welding, response surface methodology, genetic algorithm, process optimization, mechanical property
DOI: 10.3233/JIFS-224448
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2381-2392, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl