Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhao, Jina | Shi, Liyingb; *
Affiliations: [a] Construction and Information Management Center, Jilin Business and Technology College, Changchun, Jilin, China | [b] College of Engineering, Jilin Business and Technology College, Changchun, Jilin, China
Correspondence: [*] Corresponding author. Liying Shi, College of Engineering, Jilin Institute of Technology, Changchun 130507, Jilin, China. E-mail: 20070272@jlbtc.edu.cn.
Abstract: This paper uses two optimizers (Improved Gray Wolf Optimizer (I_GWO) and Dragonfly Optimization Algorithm (DA)) for the sensitivity and robustness of artificial intelligence (AI) techniques, namely radial basis functions (RBFs). The purpose is to evaluate and analyze the predictive strength of high-performance concrete (HPC). 170 samples were collected for this purpose. This includes eight input parameters, cement, silica fume, fly ash, water, coarse aggregate, total aggregate, high water reducing agent, concrete age, and one output parameter, the compressive strength, to produce Increase learning and validation data sets. The proposed AI model was validated against several standard criteria: coefficient of determination (R2), root mean square error (RMSE), scatter index (SI), RMSE-observations standard deviation ratio (RSR), and coefficient of persistence (CP), n10_index. Many runs were performed to analyze the sensitivity and robustness of the model. The results show that I_GWO using RBF performs better than DA. Furthermore, sensitivity analysis indicated that cement content and HPC test age are the most essential and sensitive factors for predicting the compressive strength of HPC, according to the evaluations performed on the models, it was seen that the IGWO_RBF model provided better results compared to other models and can be introduced as the practical model for the prediction of HPC’s CS. In conclusion, this study can help to select appropriate AI models and suitable input parameters to accurately and quickly estimate the compressive strength of HPC.
Keywords: High-performance concrete, compressive strength, improved Grey Wolf optimizer, Dragonfly optimization algorithm, radial basis function
DOI: 10.3233/JIFS-224382
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4089-4103, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl