Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nunsanga, Morrel V.L.a; * | Pakray, Parthab | Devi, Toijam Sonalikaa | Singh, L. Lolit Krc
Affiliations: [a] Department of Information Technology, Mizoram University, Mizoram, India | [b] Department CSE, NIT Silchar, Assam, India | [c] Department of ECE, Mizoram University, Mizoram, India
Correspondence: [*] Corresponding author. Morrel V.L. Nunsanga, Department of Information Technology, Mizoram University, Mizoram, India, 796004. E-mail: morrelhmar@mzu.edu.in.
Abstract: The process of associating words with their relevant parts of speech is known as part-of-speech (POS) tagging. It takes a substantial amount of well-organized data or corpora and significant target language research to obtain good performance for a tagger. Mizo is a language that needs more research attention in computational linguistics due to its under-resourced nature. The limited availability of corpora and relevant literature adds complexity to the task of assigning POS labels to Mizo text. This paper explores two methods to potentially improve the Hidden Markov Model (HMM)-based POS tagger for the Mizo language. The proposed taggers are compared with the baseline HMM tagger and the N-gram taggers on the designed Mizo corpus, which consists of 72,077 manually tagged tokens. The experimental results proved that the two proposed taggers enhanced the HMM-based Mizo POS tagger, achieving 81.52% and 84.29% accuracy, respectively. Moreover, a comprehensive analysis of the performance of the suggested hybrid tagger was conducted, yielding a weighted average precision, recall, and F1-score of 83.09%, 77.88%, and 79.64% respectively.
Keywords: Hybrid POS tagger, rule-based POS tagger, N-gram tagger, Mizo POS tagger, Hidden Markov Model
DOI: 10.3233/JIFS-224220
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 11725-11736, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl