Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Amanulla Khan, M.a; * | Sithi Shameem Fathima, S.M.H.b
Affiliations: [a] Department of ECE, Mohamed Sathak Engineering College, Keelakarai, Tamil Nadu, India | [b] Department of CSE, Syed Ammal Engineering College, Landai, Ramanathapuram, Tamil Nadu, India
Correspondence: [*] Corresponding author. M. Amanulla Khan, Assistant professor, Department of ECE, Mohamed Sathak Engineering College, Keelakarai, Tamil Nadu, India. 623806. E-mail: amanullakhan698@yahoo.com.
Abstract: Gait recognition is the process of recognizing a person based on their walking style. Each person’s walking gait is distinctive and cannot be imitated by others. However, the walking motion of a person will be changed based on their behaviour but their walking pattern doesn’t change. In this paper, a novel Clustering based Faster RCNN has been proposed to identify the single, double and multi-gait. The gait images from the publicly available dataset are pre-processed using Multi scale Retinex (MSR) to reduce the noise artifacts. The Faster RCNN is used for extracting the relevant features from the gait images via the two modules namely CNN and RPN. The CNN layers extract the most relevant features as feature maps and RPN is used for creating the bounding boxes for the extracted features. Fuzzy K-means clustering is used to group the features based on their labels, and it specifies the features acquired using CNN and RPN as input. Finally, the Fast RCNN is employed for classifying the gait images into suspicious and non-suspicious walking pattern. The proposed Clustering based Faster RCNN net achieves the high accuracy rate of 98.74% and 99.19% for suspicious and non-suspicious walking pattern respectively. The proposed Clustering based Faster RCNN model was compared with other traditional models like CNN, U-net, Fab net and Fast R-CNN. The proposed Clustering based Faster RCNN model improves the overall accuracy of 8.86% 33.77% 3.12% and 5.48% better than mmGait, LSTM Net, STDNN and RNN respectively.
Keywords: Gait recognition, deep learning, faster R-CNN, fuzzy K-means clustering, multi scale Retinex
DOI: 10.3233/JIFS-224114
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8597-8606, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl