Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Guo, Honga | Yang, Jinb; * | Yang, Juna
Affiliations: [a] Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China | [b] People’s Liberation Army Air Force Early Warning Academy, Wuhan, Hubei, P. R. China
Correspondence: [*] Corresponding author. Jin Yang, People’s Liberation Army Air Force Early Warning Academy, Wuhan, Hubei, P. R. China(430074). Tel.: +86 18705197217; E-mail: 450632906@qq.com.
Abstract: This paper proposes a method of using machine learning and an evolutionary algorithm to solve the flexible job shop problem (FJSP). Specifically, a back propagation (BP) neural network is used as the machine learning method, the most widely used genetic algorithm (GA) is employed as the optimized object to address the machine-selection sub-problem of the FJSP, and particle swarm optimization (PSO) is utilized to solve the operation-order sub-problem of the FJSP. At present, evolutionary algorithms such as the GA, PSO, ant colony algorithm, simulated annealing algorithm, and their optimization algorithms are widely used to solve the FJSP; however, none of them optimizes the initial solutions. Because each of these algorithms only focuses on solving a single FJSP, they can only use randomly generated initial solutions and cannot determine whether the initial solutions are good or bad. Based on these standard evolutionary algorithms and their optimized versions, the JSON object was introduced in this study to cluster and reconstruct FJSPs such that the machine learning strategies can be used to optimize the initial solutions. Specifically, the BP neural networks are trained so that the generalization of BP neural networks can be used to judge whether the initial solutions of the FJSPs are good or bad. This approach enables the bad solutions to be filtered out and the good solutions to be maintained as the initial solutions. Extensive experiments were performed to test the proposed algorithm. They demonstrated that it was feasible and effective. The contribution of this approach consists of reconstructing the mathematical model of the FJSP so that machine learning strategies can be introduced to optimize the algorithms for the FJSP. This approach seems to be a new direction for introducing more interesting machine learning methodologies to solve the FJSP.
Keywords: Flexible job shop scheduling problem, mechanical engineering, evolutionary algorithms, machine learning
DOI: 10.3233/JIFS-224021
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8845-8863, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl