Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Du, Xianjun; * | Wu, Hailei
Affiliations: School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Gansu, China
Correspondence: [*] Corresponding author. Xianjun Du, School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Gansu, China. E-mail: xdu@lut.edu.cn.
Abstract: Convolutional neural networks (CNNs) have made significant progress in the field of cloud detection in remote sensing images thanks to their powerful feature representation capabilities. Existing methods typically aggregate low-level features containing details and high-level features containing semantics to make full use of both features to accurately detect cloud regions. However, CNNs are still limited in their ability to reason about the relationships between features, while not being able to model context well. To overcome this problem, this paper designs a novel feature interaction graph convolutional network model that extends the feature fusion process of convolutional neural networks from Euclidean space to non-Euclidean space. The algorithm consists of three main components: remote sensing image feature extraction, feature interaction graph reasoning, and high-resolution feature recovery. The algorithm constructs a feature interaction graph reasoning (FIGR) module to fully interact with low-level and high-level features and then uses a residual graph convolutional network to infer feature higher-order relationships. The network model effectively alleviates the problem of a semantic divide in the feature fusion process, allowing the aggregated features to fuse valuable details and semantic information. The algorithm is designed to better detect clouds with complex cloud layers in remote sensing images with complex cloud shape, size, thickness, and cloud-snow coexistence. Validated on publicly available 38-Cloud and SPARCS datasets and the paper’s own Landsat-8 cloud detection dataset with higher spatial resolution, the proposed method achieves competitive performance under different evaluation metrics. Code is available at https://github.com/HaiLei-Fly/CloudGraph.
Keywords: Remote sensing image cloud detection, feature interaction, graph convolutional networks, image segmentation, interpretability
DOI: 10.3233/JIFS-223946
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9123-9139, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl