Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Noon, Serosh Karima; b; * | Amjad, Muhammada | Qureshi, Muhammad Alia | Mannan, Abdulb
Affiliations: [a] Department of Electrical Engineering, The Islamia University of Bahawalpur, Pakistan | [b] Department of Electrical Engineering, NFC Institute of Engineering & Technology, Pakistan
Correspondence: [*] Corresponding author. Serosh Karim Noon. E-mail: seroshkarim@nfciet.edu.pk.
Abstract: For the last decade, the use of deep learning techniques in plant leaf disease recognition has seen a lot of success. Pretrained models and the networks trained from scratch have obtained near-ideal accuracy on various public and self-collected datasets. However, symptoms of many diseases found on various plants look similar, which still poses an open challenge. This work takes on the task of dealing with classes with similar symptoms by proposing a trained-from-scratch shallow and thin convolutional neural network employing dilated convolutions and feature reuse. The proposed architecture is only four layers deep with a maximum width of 48 features. The utility of the proposed work is twofold: (1) it is helpful for the automatic detection of plant leaf diseases and (2) it can be used as a virtual assistant for a field pathologist to distinguish among classes with similar symptoms. Since dealing with classes with similar-looking symptoms is not well studied, there is no benchmark database for this purpose. We prepared a dataset of 11 similar-looking classes and 5, 108 images for experimentation and have also made it publicly available. The results demonstrate that our proposed model outperforms other recent and state-of-the-art models in terms of the number of parameters, training & inference time, and classification accuracy.
Keywords: Plant disease, similar-looking symptoms, shallow CNN models, lightweight models, agriculture
DOI: 10.3233/JIFS-223554
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 105-120, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl