Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Enchenga | Mao, Zichena; * | Wang, Jiea | Lin, Damingb
Affiliations: [a] Information Engineering College, North China University of Technology, Beijing, China | [b] Research Institute of Highway, Ministry of Transport, Beijing, China
Correspondence: [*] Corresponding author. Zichen Mao, Information Engineering College, North China University of Technology, Beijing, 100144, China. E-mail: 1076759592@qq.com ORCiD ID: https://orcid.org/0000-0002-3640-4635
Abstract: Wind power is widely used in industry, meteorology, shipping and so on. Accurate measurement of wind parameters is the key to improve the efficiency of wind power application. But at present, wind parameters are largely measured by different devices based on time difference method, which is easily influnced by enviromental noise. Beam-forming algorithm can improve the ability to resist environmental noise and the accuracy of hardware itself. Therefore, the beam-forming algorithm can be used to measure wind parameters in the high noise environment. However, the efficiency of the algorithm depends on how to search for spectral peak. In this paper, a three-dimensional wind measurement method with chaotic-sequence improved genetic-particle swarm optimization algorithm is proposed to improve the waveform searching efficiency of beamforming algorithm. It first searches for rough target wind parameters globally, and then searches for precise target wind parameters locally. Through simulation verification, the proposed algorithm can measure the wind parameters after 0.087s under the condition of system error of 50dB and environmental noise of 20dB, the accuracy of wind speed is 0.5%, the accuracy of wind direction is 1%, and the accuracy of pitch angle is 0.5%. Compared with the wind measurement by traversal method, the proposed algorithm can improve the wind measurement efficiency by about 20 times, and has similar or even better measurement results.. And by comparing with other algorithms, the advantages of this algorithm are verified.
Keywords: Three-dimensional wind measurement, beam-forming algorithm, chaotic sequence, genetic algorithm, particle swarm algorithm
DOI: 10.3233/JIFS-223378
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 5309-5320, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl