Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zheng, Yue | Xing, Cheng; * | Wang, Jie-Sheng | Song, Hao-Ming | Bao, Yin-Yin | Zhang, Xing-Yue
Affiliations: School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
Correspondence: [*] Corresponding author. Cheng Xing. Tel.: +86 0412 2538355; E-mail: xingcheng0811@163.com.
Abstract: The reptile search algorithm (RSA) is a dynamic and effective meta-heuristic algorithm inspired by the behavior of crocodiles in nature and the way of hunting prey. Unlike other crawler search algorithms, it uses four novel mechanisms to update the location of the solutions, such as walking at high or on the belly, and hunting in a coordinated or cooperative manner. In this algorithm, the total number of iterations is divided into four intervals, and different position-updating strategies are used to make the algorithm easily fall into the local optimum. Therefore, an improved reptile search algorithm based on a mathematical optimization accelerator (MOA) and elementary functions is proposed to improve its search efficiency and make it not easily fall into local optimum. MOA was used to realize the switching of RSA’s four searching modes by introducing random perturbations of six elementary functions (sine function, cosine function, tangent function, arccosine function, hyperbolic secant function and hyperbolic cosecant function), four mechanisms are distinguished by random number instead of the original RSA algorithm’s inherent four mechanisms by iteration number, which increases the randomness of the algorithm and avoids falling into local optimum. The random perturbations generated by elementary functions are added to the variation trend of parameter MOA to improve the optimization accuracy of the algorithm. To verify the effectiveness of the proposed algorithm, 30 benchmark functions in CEC2017 were used for carrying out simulation experiments, and the optimization performance was compared with BAT, PSO, ChOA, MRA and SSA. Finally, two practical engineering design problems are optimized. Simulation results show that the proposed sechRSA has strong global optimization ability.
Keywords: Reptile search algorithm, mathematically optimized accelerator, elementary function, function optimization, engineering optimization
DOI: 10.3233/JIFS-223210
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4179-4208, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl