Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Xiaoninga | Yu, Qianchenga; b; * | Yang, Yufana | Tang, Chena | Wang, Jinyunc
Affiliations: [a] School of Computer Science and Engineering, North Minzu University, Yinchuan, China | [b] The Key Laboratory of Images and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, China | [c] School of Business, North Minzu University, Yinchuan, China
Correspondence: [*] Corresponding author. Qiancheng Yu, PhD, E-mail: 1999019@nmu.edu.cn.
Abstract: This paper proposes an evolutionary ensemble model based on a Genetic Algorithm (GAEEM) to predict the transmission trend of infectious diseases based on ensemble again and prediction again. The model utilizes the strong global optimization capability of GA for tuning the ensemble structure. Compared with the traditional ensemble learning model, GAEEM has three main advantages: 1) It is set to address the problems of information leakage in the traditional Stacking strategy and overfitting in the Blending strategy. 2) It uses a GA to optimize the combination of base learners and determine the sub. 3) The feature dimension of the data used in this layer is extended based on the optimal base learner combination prediction information data, which can reduce the risk of underfitting and increase prediction accuracy. The experimental results show that the R2 performance of the model in the six cities data set is higher than all the comparison models by 0.18 on average. The MAE and MSE are lower than 42.98 and 42,689.72 on average. The fitting performance is more stable in each data set and shows good generalization, which can predict the epidemic spread trend of each city more accurately.
Keywords: Evolutionary ensemble, genetic algorithm, ensemble strategy, epidemics transmission prediction
DOI: 10.3233/JIFS-222683
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 7469-7481, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl