Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karthigha, M.a; * | Latha, L.b
Affiliations: [a] Department of Computer Science Engineering, Sri Ramakrishna Engineering College, Coimbatore, India | [b] Department of Computer Science Engineering, Kumaraguru College of Technology, Coimbatore, India
Correspondence: [*] Corresponding author. M. Karthigha, Department of Computer Science Engineering, Sri Ramakrishna Engineering College, Coimbatore – 641 022, India. E-mail: karthigham50@gmail.com.
Abstract: Industrial Control Systems (ICS) are susceptible to threats or attacks, and even minor changes or manipulation could cause major damage to industrial operations. Industrial control system cybersecurity is vital owing to the severe negative effects it could have on the economy, the environment, people, and politics. Therefore, it’s also crucial to design intrusion detection systems for industrial control systems. In this paper, an efficient intrusion detection system with clustered ensemble feature selection and a Multi-Level Modified Gated Recurrent Unit (M-GRU) classification model is proposed. This intrusion detection system with a general framework for clustered ensemble feature ranking approach is proposed to effectively find the best feature subset in network packet traffic data. The features designated are fed into a multi class classification algorithm Multi-Level Modified Gated Recurrent Unit (M-GRU) to efficiently detect the cyberattacks. Evaluation criteria including precision, accuracy, recall and F1 score are assessed and compared to other cutting-edge algorithms to assess the performance of the proposed model. The proposed model attained an average accuracy of 98.21 %. Results show that the suggested model increased the attack detection accuracy by an average of 5.935% and 0.116% when compared to the Gated Recurrent Unit, Long Short Term Memory, random forest and naïve bayes models.
Keywords: Industrial control system, intrusion detection, ensemble feature selection, classification, gated recurrent unit
DOI: 10.3233/JIFS-222643
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9109-9127, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl