Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhong, Cheng | Wang, Jie-Sheng; * | Liu, Yu
Affiliations: School of Electronic and Information Engineering, University of Science & Technology Liaoning, Anshan, China
Correspondence: [*] Corresponding author. Jie-Sheng Wang, School of Electronic and Information Engineering, University of Science & Technology Liaoning, Anshan 114044, China. E-mail: wang_jiesheng@126.com.
Abstract: The rolling bearing fault diagnosis is affected by industrial environmental noise and other factors, leading to the existence of some redundant components after signal decomposition. At the same time, the existence of the modal aliasing phenomenon in empirical mode decomposition (EMD) and the relevant improved algorithms also leads to the existence of many invalid features in the components. These phenomena have great influence on the bearing fault diagnosis. So a rolling bearing bidirectional-long short term memory (Bi-LSTM) fault diagnosis method was proposed based on segmented interception auto regressive (SIAR) spectrum analysis and information fusion. The ensemble empirical mode decomposition (EEMD), the complementary ensemble empirical mode decomposition (CEEMD) and the robust EMD (REMD) algorithms decompose the rolling bearing fault signals, and AR spectrum analysis is performed on the obtained components respectively. By comparing the AR spectra of the components corresponding to different fault locations, the effective AR spectral values are intercepted as the eigenvalues of the data, and finally all the eigenvalues are fused to achieve the purpose of screening effective features more efficiently so as to reduce the impact of feature redundancy caused by mode aliasing on neural network training. Then the Bi-LSTM neural network was used as a rolling bearing fault diagnosis classifier, and the simulation experiments were conducted based on the rolling bearing fault signal data from Case Western Reserve University to verify the effectiveness of the proposed feature extraction and fault diagnosis method.
Keywords: Rolling bearing, fault diagnosis, AR spectrum analysis, information fusion, empirical mode decomposition, LSTM
DOI: 10.3233/JIFS-222476
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8493-8519, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl