Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kala, R.a; * | Deepa, P.b
Affiliations: [a] Department of Computer Science and Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India | [b] Department of Electronics and Communication Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India
Correspondence: [*] Corresponding author. R. Kala, Associate Professor, Department of Computer Science and Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India. E-mail: kalarajamani04@gmail.com.
Abstract: Brain tumor is an anomalous growth of brain cells. Segmentation of brain tumors is currently the most important surgical and pharmaceutical procedure. However, manually segmenting the brain tumor is a challenging task due to the complex structure of brain. In recent years, artificial intelligence techniques with the fuzzy logic have shown better results in the field of medicine. In this work, a novel deep learning classification network with fuzzy hexagonal membership function (DLC-FHMF) model has been proposed for accurately segmenting brain tumors. The different MRI modalities namely T1, T1-c, T2 and Flair images are preprocessed using a fuzzy hexagonal trilateral and median filter to eliminate the Rician noise. Afterwards, the DLC-FHMF model is used for segmenting the tumor portion by using the multimodal composition of MRI as input. The fuzzy weights are determined with hexagonal membership functions and convoluted with the corresponding MRI images. The quantitative examination is carried out using the performance metrics namely accuracy, specificity, precision, sensitivity, incorrect segmentation, under-segmentation, and over-segmentation. In addition to the above metrics, the pre-processing metrics include PSNR, RMSE, and SSIM. The experimental fallout portrayals that the proposed DLC-FHMF approach attains a better accuracy range of 99% for detecting brain tumors using the BRATS 2013 dataset. The proposed DLC-FHMF model improves the overall accuracy by 15.1%, 11.1%, 3.0%, 21.2% and 0.5% better than ANN, SVM, NB, DNN and DAE respectively.
Keywords: Brain tumor, magnetic resonance image, fuzzy logic, deep learning, segmentation
DOI: 10.3233/JIFS-221990
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2979-2992, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl