Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shanmuga Priya, K.a; * | Vasanthi, S.a; b
Affiliations: [a] PhD Research Scholar, EEE Department, University College of Engineering, Dindigul, Tamil Nadu, India | [b] Assistant Professor, EEE Department, University College of Engineering Dindigul, Tamil Nadu, India
Correspondence: [*] Corresponding author. K. Shanmuga Priya, PhD Research Scholar, EEE Department, University College of Engineering, Dindigul, Tamil Nadu 624622, India. E-mail: shanmugak4@gmail.com.
Abstract: An emotion is a conscious logical response that varies for different situations in women’s life. These mental responses are caused by physiological, cognitive, and behavioral changes. Gender-based violence undermines the participation of women in decision-making, resulting in a decline in their quality of life. More accurate and automatic classification of women’s emotions can enhance human-computer interfaces and security in real time. There are some wearable technologies and mobile applications that claim to ensure the safety of women. However, they rely on limited social action and are ineffective at ensuring women’s safety when and where it is needed. In this work, a novel CDB-LSTM network has been proposed to accurately classify the emotions of women in seven different classes. The electroencephalogram (EEG) offers non-radioactive methods of identifying emotions. Initially, the EEG signals are preprocessed and they are converted into images via Time-Frequency Representation (TPR). A smoothed pseudo-Wigner-Ville distribution (SPWVD) is employed to convert the EEG time-domain signals into input images. Consequently, these converted images are given as input to the Convolutional Deep Belief Network (CDBN) for extracting the most relevant features. Finally, Bi-directional LSTM is used for classifying the emotions of women into seven classes namely: happy, relax, sad, fear, anxiety, anger, and stress. The proposed CDB-LSTM network preserves the high accuracy range of 97.27% in the validation phase. The proposed CDB-LSTM network improves the overall accuracy by 6.20% 32.98% 6.85% and 3.30% better than CNN-LSTM, Multi-domain feature fusion model, GCNN-LSTM and CNN with SVM and DT respectively.
Keywords: Women safety, EEG signals, emotion classification, smoothed pseudo-wigner-ville distribution, convolutional deep belief network, bi-directional LSTM
DOI: 10.3233/JIFS-221825
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9697-9707, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl