Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ramshankar, N.; * | Joe Prathap, P.M.
Affiliations: Department of Computer Science and Engineering, R. M. D Engineering College, Kavaraipettai, Tamilnadu, India
Correspondence: [*] Corresponding author. N. Ramshankar, Associate professor, Department of Computer Science and Engineering, R. M. D Engineering College, Kavaraipettai, Tamilnadu India. E-mail: ramshankar9686@yahoo.com.
Abstract: Nowadays, people always use online promotions to know about best shops to buy the best products. This shopping experience and shopper’s opinion about the shop can be observed by the customer-experience shared on social media. A new customer when searching a shop needs information about manufacturing date (MRD) and manufacturing price (MRP), offers, quality, and suggestions which are only provided by the previous customer experience. Several approaches were used previously for predicting the product details, but no one approach provides accurate information. To overcome these issues, Reviewer Reliability and XGboost whale Optimized Sentiment Analysis for Online Product Recommendation is proposed in this manuscript.Initially, Amazon Product recommendation datathe data are preprocessed and given to XGboost Classifier that classifies the product recommendation result as, good, bad and average. Generally the XGboost Classifier does not reveal any adoption of optimization techniques for computing the optimal parameters for assuring accurate classification of product recommendation. Therefore in this work, proposed Whale optimization algorithm utilized to optimize the weight parameters of the XGboost. Then the proposed model is implemented in MATLAB. The proposed method attains 18.31%, 12.81%, 45.75%, 26.97% and 25.55% lower Mean Absolute error, 18.31%, 12.81%, 27.97%, 25.97%, and 25.55% higher Mean absolute percentage error and 15.31%, 10.33%, 25.86%, 22.86% and 15.22% lower Mean Square Error than the existing methods.
Keywords: Whale optimization algorithm (WOA), XGBoost classifier, sentiment analysis, online product shopping reviews, recommendation system
DOI: 10.3233/JIFS-221633
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 1, pp. 1547-1562, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl