Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Jilan;
Affiliations: School of Civil Engineering, South West Jiaotong University, ChengDu, China
Correspondence: [*] Corresponding author. Jilan Chen, School of Civil Engineering, South West Jiaotong University, ChengDu, 610031, China. E-mail: chen-jl@swjtu.edu.cn.
Abstract: The vast usage of concrete made it the second most used material after water. This volume of concrete consumes an enormous number of natural sources and chronically enhances environmental pollution by CO2 emission. Cementitious supplementary materials such as fly ash and micro silica help decrease the usage of cohesive materials in the concrete and improve concrete’s properties, specifically compressive strength. In addition, due to being the by-product materials of other industries, applying these materials contribute to the decline of environmental pollution. On the other hand, fly ash and micro silica decrease the ratio of water to cement and increase the compressive strength (CS) of concrete. High-Performance Concrete (HPC) is one of the types of concrete used in dams, bridges, etc. In order to achieve the compressive strength of HPC, it is necessary to conduct laboratory tests, which are not economical in terms of time and cost. For this reason, in the present study, the prediction of the CS of the mentioned concrete can be done based on soft-based and artificial intelligence. Furthermore, various mixed designs of HPC, such as fly ash and silica fume coupled with different percentages of plasticizers, are considered the base dataset for developing the prediction models. Neural network-based model hybridized with antlion optimization algorithm and biography-based optimization algorithm developed for compressive strength estimation. The result showed that the AMLP-I model with R2 and RMSE values of 0.9879 and 1.9003 accurately predicted compressive strength and can be referred to as the most qualitative prediction model compared to the BMLP model.
Keywords: Compressive strength, high-performance concrete, antlion optimization, biography-based optimization, artificial neural network
DOI: 10.3233/JIFS-221544
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4125-4138, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl