Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Affiliations: Department of Civil and Architectural Engineering, Nanchong Vocational and Technical College, Nanchong, Sichuan, China
Correspondence: [*] Corresponding author. Huan Li. E-mail: LH13890897259@163.com.
Abstract: The difficulties in determining the compressive strength of concrete are inherited due to the various nonlinearities rooted in the mix designs. These difficulties raise dramatically considering the modern mix designs of high-performance concrete. Presents study tries to define a simple approach to link the input ingredients of concrete with the resulted compressive with a high accuracy rate and overcome the existing nonlinearity. For this purpose, the radial base function is defined to carry out the modeling process. The optimal results were obtained by determining the optimal structure of radial base function neural networks. This task was handled well with two precise optimization algorithms, namely Henry’s gas solubility algorithm and particle swarm optimization algorithm. The results defined both models’ best performance earned in the training section. Considering the root mean square error values, the best value stood at 2.5629 for the radial base neural network optimized by Henry’s gas solubility algorithm, whereas the same value for the the radial base neural network optimized by particle swarm optimization was 2.6583 although both hybrid models provided acceptable output results, the radial base neural network optimized by Henry’s gas solubility algorithm showed higher accuracy in predicting high performance concrete compressive strength.
Keywords: High-performance concrete, Henry’s gas solubility algorithm, particle swarm optimization algorithm, radial base function neural network
DOI: 10.3233/JIFS-221342
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 1791-1803, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl