Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jiang, Ruiyanga; *
Affiliations: School of Architecture, Shangqiu Polytechnic, Shangqiu, Henan, China
Correspondence: [*] Corresponding author. Ruiyang Jiang, School of Architecture, Shangqiu Polytechnic, Shangqiu, Henan, 476000, China. E-mail: shcncnic19921@student.napavalley.edu.
Abstract: The Pile motion seems to be one of the most critical in pile failure that requires appraisal before installing piles. The variables to estimate the Pile Settlement parameter, there are several methods. Among existing theoretical ways to investigate the pile movement mathematically, most studies have tried to model the piles’ settlement overloading period using artificial intelligence. Thus, this research has used the Artificial Neural Network to have the actual status of pile motion vertically over the loading periods dynamically and statically. Therefore, the present research has utilized the Radial Basis Function Neural Network joint with Equilibrium Optimizer Algorithm and Grasshopper Optimization Algorithm to figure out the optimum number of neurons within the hidden layer. Kuala Lumpur’s Klang Valley Mass Rapid Transit transportation network, Malaysia, opted to model the piles’ settlement and earth properties via the proposed hybrid RBF-GOA and RBF-EOA frameworks. By modeling both frameworks, the error index of RMSE for RBF-GOA and HRBF-EOA were gained to 0.6312 and 0.5947, respectively. However, the VAF indicator showed identical results of the rates 96.98 and 97.33, respectively. Overly, the RBF-EOA represented better than RBF-GOA by little efficiency.
Keywords: Pile in rock, settlement, prediction, radial basis function, equilibrium optimizer algorithm, grasshopper optimization, R-value correlation
DOI: 10.3233/JIFS-220741
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 6683-6695, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl