Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Arun, R. Arumugaa; * | Umamaheswari, S.b
Affiliations: [a] Department of Computer Technology, Anna University – MIT Campus, Chennai, Tamil Nadu, India | [b] Department of Information Technology, Anna University – MIT Campus, Chennai, Tamil Nadu, India
Correspondence: [*] Corresponding author. R. Arumuga Arun, Department of Computer Technology, Anna University –MIT Campus, Chennai, Tamil Nadu, India. E-mail: arumugaarunr@mitindia.edu.
Abstract: Traditional machine learning-based pest classification methods are a tedious and time-consuming process A method of multi-class pest detection based on deep learning and convolutional neural networks could be the solution. It automatically extracts the complex features of different pests from the crop pest images. In this paper, various significant deep learning-based object detection models like SSD, EfficientDet, Faster R-CNN, and CenterNet are implemented based on the Tensorflow Object Detection framework. Several significant networks like MobileNet_V2, ResNet101_V1, Inception_ResNet_V2, EfficientNet, and HourGlass104 are employed as backbone networks for these models to extract the different features of the pests. Object detection models are capable of identifying and locating pests in crops. Initially, these models are pre-trained with the COCO dataset and later be fine-tuned to the target pest dataset of 20 different pest classes. After conducting experiments on these models using the pest dataset, we demonstrate that Faster R-CNN_ResNet101_V1 outperformed every other model and achieved mAP of 74.77%. Additionally, it is developed as a lightweight model, whose size is ∼9 MB, and can detect pest objects in 130 milliseconds per image, allowing it to be used on resources-constrained devices commonly used by farmers.
Keywords: Deep learning, Convolutional Neutral Network, object detection, pest detection, transfer learning
DOI: 10.3233/JIFS-220595
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 5185-5203, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl