Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tang, Jianfeia; b | Zhao, Huia; b; *
Affiliations: [a] Xinjiang Key Laboratory of Multilingual Information Technology, School of Information Science and Engineering, Xinjiang University, People’s Republic of China | [b] Xinjiang Key Laboratory of Signal Detection and Processing, School of Information Science and Engineering, Xinjiang University, People’s Republic of China
Correspondence: [*] Corresponding author. Hui Zhao, Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang Key Laboratory of Signal Detection and Processing, School of Information Science and Engineering, Xinjiang University, People’s Republic of China. E-mail: zhaohui@xju.edu.cn.
Abstract: The focus of a large amount of research on malware detection is currently working on proposing and improving neural network structures, but with the constant updates of Android, the proposed detection methods are more like a race against time. Through the analysis of these methods, we found that the basic processes of these detection methods are roughly the same, and these methods rely on professional reverse engineering tools for malware analysis and feature extraction. These tools generally have problems such as high time-space cost consumption, difficulty in achieving concurrent analysis of a large number of Apk, and the output results are not convenient for feature extraction. Is it possible to propose a general malware detection process implementation platform that optimizes each process of existing malware detection methods while being able to efficiently extract various features on malware datasets with a large number of APK? To solve this problem, we propose an automated platform, AmandaSystem, that highly integrates the various processes of deep learning-based malware detection methods. At the same time, the problem of over privilege due to the openness of Android system and thus the problem of excessive privileges has always required the accurate construction of mapping relationships between privileges and API calls, while the current methods based on function call graphs suffer from inefficiency and low accuracy. To solve this problem, we propose a new bottom-up static analysis method based on AmandaSystem to achieve an efficient and complete tool for mapping relationships between Android permissions and API calls, PerApTool. Finally, we conducted tests on three publicly available malware datasets, CICMalAnal2017, CIC-AAGM2017, and CIC-InvesAndMal2019, to evaluate the performance of AmandaSystem in terms of time efficiency of APK parsing, space occupancy, and comprehensiveness of extracted features, respectively, compared with existing methods were compared.
Keywords: Cybersecurity, android malware analysis, static analysis, dynamic analysis, least privilege
DOI: 10.3233/JIFS-220567
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 6575-6589, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl